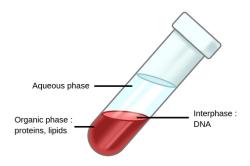
Introduction to RNA Extraction

BMES Cell Team
Spring 2021


Background

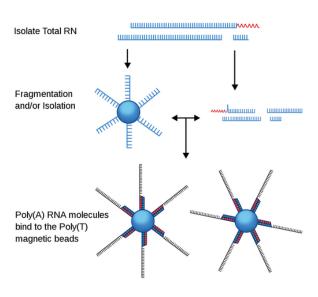
Gene Expression

- In your Labster Simulation, you will be using pigs as a model animal to perform mRNA extraction
- Recall that mRNA is the product of transcription; it contains the nucleic acids that code for a protein
- In the case of protein-coding genes, the abundance of mRNA reflects the level of gene expression

mRNA Extraction

- A common method used to isolate RNA is guanidinium thiocyanate-phenolchloroform extraction
- This solvent is made up of protein denaturing molecules, and organic phase, and an aqueous phase

mRNA Extraction


The main steps of RNA isolation are as follows:

- 1. Cell lysis and disruption of cellular structures
- 2. Separation of the RNA from cell debris
- 3. Purification of the RNA from the DNA and proteins
- 4. Precipitation of RNA
- 5. Wash and resuspension of the RNA
- After centrifugation, RNA ends up in the aqueous phase and is precipitated by adding isopropanol

mRNA Purification with Magnetic Beads

- To purify mRNA, we want to bioconjugate magnetic beads to mRNA
- To do this, we must attach the magnetic beads with oligodT (a chain of Thymines), which will bind to a section of mRNA called the polyA tail
 - → Recall that A pairs with T and C pairs with G
- When placed in a magnetic rack, the beads that are conjugated to the mRNA will be separated from the solution
- We can then pipette the solution containing unwanted materials and wash the beads with 70-80% ethanol
- After several rounds of washing, we can elute (separate) the mRNA molecules from the magnetic beads and transfer them to a new tube

mRNA Purification with Magnetic Beads

